TANK WASHING TECHNIQUES

The continuous research for higher efficiency in all kind of industries, and the requirement to assure a constant and higher quality level for their products, highlight the necessity that every step in the production, stocking and transporting processes are performed using adequately clean systems and tanks.

At the same time, as disposing of liquid effluents is becoming more and more costly, it becomes necessary that each cleaning process, while reaching a totally satisfactory result, is performed using the lowest possible volume of cleaning solution.

The two above factors have originated the introduction on the market of an always wider variety of tank cleaning devices, ranging from the classic fixed head to more and more sophisticated models to cope with the most demanding applications.

Our long experience in the field of tank cleaning suggests that the following basic concepts are given proper consideration in order to determine the correct washing cycle for each single application, and consequently the most suitable type of tank cleaning device.

1 PROPER FILTERING FOR THE WASHING LIQUID

Small inner passages and precision machined parts are typically found in tank washing equipment. In such cases where the washing cycle is performed by means of a recycled solution the solid particles which may be dispersed into the solution must be characterized for dimension and properties. Since suspended solid particles may affect proper operation of tank washing equipment, or require more frequent cleaning or service of the same, we suggest that a suitable line filter be considered: you can check pag. 18 of this catalogue, while the catalogue “Spray nozzles & assembly fittings” presents a wide range of filters, for every application.

2 CORRECT CHOICE FOR WASHING CYCLE AND SOLUTION

Based on the type of product which has to be eliminated, each single process has to be examined in order to define such parameters as the appropriate washing fluid, the right temperature, jet pressure and washing time of every phase.

3 ADEQUATE MOTIVE MECHANISM

The number of products which need to be removed from the wall of a tank is near to endless, each one showing its own different properties.

Washing cycles can range from a quick water rinse at low pressure and ambient temperature, to long lasting cycles using hot water and caustic, sometimes at high pressure.

The latter situation requires both a slow motion of the fluid jets, which have to hit the tank wall without breaking into drops and loose their impact, and a properly indexed rotation so that the revolving jets do not hit the same path at each turn.

Our tankwashers range, the most complete on the market, is classified by number of rotation axis and type of motive mechanism.

4 CLEANING RADIUS / WETTING RADIUS

It is not possible to define the cleaning radius of any tank washing equipment without making reference to precise conditions as the product to be eliminated, the cleaning fluid, the operating pressure and temperature.

Such value can only be determined by experience, for each single given process. It is instead possible to define a wetting radius, as the radius where the equipment can wet the entire tank inner surface: in this condition it must be expected the fluid to hit the wall with a small fraction of its original impact force.

The maximum wetting radius for each one of our product is stated in the table at page 21 of this catalogue.
INTRODUCTION

TANK WASHING TECHNIQUES

CONSTRUCTION MATERIALS
Because of their application in the chemical, food and pharmaceutical processes tankwashers are manufactured as a rule out of high quality materials, offering in various combinations high resistance to corrosion and ability to withstand high temperatures. Metal parts are usually made of austenitic stainless steel, mostly AISI 316L and AISI 316Ti grades, while some special applications may require high grade alloys like Hastelloy, in a variety of types. Parts in plastic materials are normally made out Teflon, Graphite-filled Teflon or PEEK.

EFFICIENCY ASSESSMENT
It is very difficult to assess such value as the efficiency range with reference to a given tank washing device without taking into considerations the various parameters relating to the process conditions, such as the materials you have to remove, working temperature and pressure, the time of every washing cycle. While choosing a tank washing head, you have to consider if:
• the wetting radius is adequate for the dimension of the tank (check the wetting radius at page 21 of this Catalogue)
• the capacity can provide the whole inner surface with a correct amount of washing solution for square measure;
• the impact force of the jet and the time required to complete a cleaning cycle are adequate for the product and/or process.
While taking in consideration all these elements, PNR Italia can suggest one or more suitable tank washing heads, depending on the specific case.

CLEANING VALIDATION
This is the process whereby the desired cleaning condition is verified by means of a repeatable technique supplying results easily readable and according to the quality control requirements. There are two main verification you can do, in order to have a correct validation:
1) adequate distribution of the spray on the surface of the tank
It's common to spray the inner surface of the tank with Riboflavin, then to complete a cleaning cycle, and therefore to examine with an ultraviolet lamp that every trace of Riboflavin has been eliminated. Riboflavin is easily miscible with water at ambient temperature and should be completely eliminated from the surface when the same is satisfactorily covered by the washing jets. Traces of Riboflavin still sticking to the surface are revealed through an ultra-violet long wave light, and indicate areas not properly covered from the washing operation.
2) Absence of organic residue
Cleaning operations tend to eliminate proteins spots of animal/vegetable origin, nourishment for microorganisms that facilitate the development of bacteria and retrain active molecules. The variety of possible cases and of existing regulations is such that the validation methodology is examined on a case-by-case basis. For example, a very common the technique is ATP-metry to count bacteria, which is based on ATP (Adenosine triphosphate, source of energy present in all living cells): the degradation reaction of ATP produces photons, whose intensity it is proportional to the amount of ATP present, and therefore the measurement of luminous intensity with a luminometer gives information on the quantity of cells present, and therefore on the cleaning condition of the tank.

DEFINITIONS
Spray coverage
It is the solid angle covered by the jets, with an origin in the point of the tank washer at the water inlet, and defined as follows:
• the reference direction is the one of the fluid in the inlet connection;
• the direction of the jet is DOWN when it is concurrent to the reference direction;
• the direction of the jet is UP when it is opposite to the reference direction.

Single axis heads
It's a device where the moving part is rotating around the vertical axis of the feed pipe. They are more suitable to wash products with low resistance.

Twin axis heads
It's a device where the washing nozzles rotate around an horizontal axis, while the tankwasher body carrying the nozzles rotates at the same time around the vertical axis of the feed pipe. They allow stronger washing actions.

FDA approved
With this sentence, we confirm that the materials used for manufactoring the products fall within the list of the FDA and CE 1935/2004 approved food grade materials. Among them we have AISI 316L, PTFE, PEEK.