FULL CONE PATTERN

The shape of the tip determines the spray range of full cone nozzles. A typical application of these nozzles is continuous casting cooling when it’s necessary to spray the same volume of liquids onto a surface to cool objects. Our engineers design a series of full cone nozzles to satisfy different needs. No matter what kind of full cone nozzles they are, they have unique applications.

STANDARD FULL CONE (Turbulence nozzle)

These nozzles use a specially shaped vane placed at the nozzle inlet to give a rotational speed to the fluid flowing through the nozzle. Because of the rotational speed of the fluid, water exiting the nozzle orifice is subjected to centrifugal force and opens up in the shape of a full cone. The extent of the angle of the cone is a function of both exit speed (created from the inlet pressure) and the internal design of the nozzle. It can vary in practice from 15° to 120°.

These nozzles can also be produced as square full cone nozzles where the square shape of the pyramidal spray is obtained by a special design of the outlet orifice. Two important details have to be noted from the system designer when using these type of nozzles:
1. The spray angle is measured on the side of the square section.
2. The square section of the spray rotates within the distance from the nozzle orifice to the target area.

SPIRAL FULL CONE (Impact nozzle)

This is not properly a full cone but rather a continuous liquid curtain evolving with the shape of a spiral inside a conical volume. The disadvantage of a scarcely even distribution is compensated by an exceptionally good resistance to clogging, large orifice and vaneless which make this nozzle the best choice in those applications such as wet scrubber, fire-fighting systems, etc.

MULTIPLE FULL CONE (Turbulence nozzle)

Several nozzles are grouped in a cluster with different spray directions. These nozzles produce large capacity of watermist. If you need both large capacity and mist, multi-orifice full cone nozzles are the best option.
FLAT FAN SPRAY PATTERN

A flat fan spray nozzle serves the purpose of spraying onto a surface or an object moving in a transverse direction with respect to the one of the jet surface, a typical example being the nozzles in a car washing tunnel. The vast majority of flat spray nozzles used in the industry work according to one of the following principles.

IN LINE FLAT FAN (Pressure nozzle)
This is the general purpose flat fan nozzle where the liquid enters the nozzle in line with the axis length and is fed to a pressure chamber from where it is ejected through the nozzle orifice. Flow value and spray angle are determined respectively from the orifice cross section and the orifice edge profile.

IN LINE STRAIGHT JET (Pressure nozzle)
Straight nozzles can be considered as flat fan nozzles as the only difference is the spray angle which is zero degrees in straight nozzles. These nozzles are often used in high-pressure operating environments where the wear resistance of the nozzles is very important. It ensures optimum service life and spray orientation. PNR offers a wide range of material selection.
- 416 hardened stainless steel
- Ruby nozzle + stainless steel body
- Tungsten carbide nozzle tip + stainless steel body

SPOON FLAT FAN (Impact nozzle)
These nozzles feature a flat fan spray. According to the different arc design, these spoon flat fan nozzles can be of two types: high impact with narrow spray angle or low pressure with wide spray angle.
- Under the same operating conditions, narrow angle high impact nozzles produce a higher impact force than standard flat fan nozzles. They are suitable for cleaning environments that need strong impact force.
- Low pressure nozzles with wider spray angle produce a 130° spray angle and a large area of water curtain effect. Low-impact spray nozzles are widely used in various applications such as foam removal, water curtain for gas separation, fruits and vegetables cleaning.

HOLLOW CONE SPRAY PATTERN

A hollow cone spray pattern is made of droplets concentrated on a ring-shaped impact area, with no droplets falling inside the conic volume. Under the same operating conditions, hollow cone nozzles produce a very fine atomized liquid mist and can capture a higher rate of suspended particles than other nozzles. They are widely used in exhaust scrubbers and gas cooling.

HOLLOW CONE (Turbulence nozzle)
These nozzles use a tangential injection of liquid into a whirling chamber to generate centrifugal forces which break up the liquid vein as soon as it leaves the orifice. Precisely designed orifice profiles, making use of the Coanda effect, provide the ability to obtain very large spray angles.

HOLLOW CONE (Deflection nozzle)
A hollow cone can also be obtained taking a liquid flow to change direction onto a properly designed surface in order to break the liquid into droplets and distributes them as a hollow cone spray pattern with clog resistance. This kind of nozzle is mainly used for applications in fire-fighting systems.